Visualization of the intact interface between neural tissue and implanted microelectrode arrays.
نویسندگان
چکیده
This research presents immunohistochemical strategies for assessing the interactions at the immediate interface between micro-scale implanted devices and the surrounding brain tissue during inflammatory astrogliotic reactions. This includes preparation, microscopy and analysis techniques for obtaining images of the intimate contact between neural cells and the surface of implantable micro-electromechanical systems (MEMS) devices. The ability to visualize the intact interface between an implant and the surrounding tissue allows researchers to examine tissue that is unchanged from its native implanted state. Conversely, current popular techniques involve removing the implant. This tends to cause damage to the tissue immediately surrounding the implant and can hinder one's ability to differentiate inflammatory responses to the implant versus physical damage occurring from removal of the implant from the tissue. Due to advances in microscopy and staining techniques, it is now possible to visualize the intact tissue-implant interface. This paper presents the development of imaging techniques for visualizing the intact interface between neural tissue and implanted devices. This is particularly important for understanding both the acute and chronic neuroinflammatory responses to devices intended for long-term use in a prosthetic system. Non-functional, unbonded devices were imaged in vitro and in vivo at different times post-implantation via a range of techniques. Using these techniques, detailed interactions could be seen between delicate cellular processes and the electrode surface, which would have been destroyed using conventional histology processes.
منابع مشابه
Biomechanical Strain Analysis at the Interface of Brain and Nanowire Electrodes on a Neural Probe
The viability of neural probes with microelectrodes for neural recording and stimulation in the brain is important for the development of neuroprosthetic devices. Vertically aligned nanowire microelectrode arrays can significantly enhance the capabilities of neuroprosthetic devices. However, when they are implanted into the brain, micromotion and mechanical stress around the neural probe may ca...
متن کاملMulti-site incorporation of bioactive matrices into MEMS-based neural probes.
Methods are presented to incorporate polymer-based bioactive matrices into micro-fabricated implantable microelectrode arrays. Using simple techniques, hydrogels infused with bioactive molecules are deposited within wells in the substrate of the device. This method allows local drug delivery without increasing the footprint of the device. In addition, each well can be loaded individually, allow...
متن کاملIntact Histological Characterization of Brain-implanted Microdevices and Surrounding Tissue
Research into the design and utilization of brain-implanted microdevices, such as microelectrode arrays, aims to produce clinically relevant devices that interface chronically with surrounding brain tissue. Tissue surrounding these implants is thought to react to the presence of the devices over time, which includes the formation of an insulating "glial scar" around the devices. However, histol...
متن کاملToward a comparison of microelectrodes for acute and chronic recordings.
Several variations of microelectrode arrays are used to record and stimulate intracortical neuronal activity. Bypassing the immune response to maintain a stable recording interface remains a challenge. Companies and researchers are continuously altering the material compositions and geometries of the arrays in order to discover a combination that allows for a chronic and stable electrode-tissue...
متن کاملNeuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays.
Implantable silicon microelectrode array technology is a useful technique for obtaining high-density, high-spatial resolution sampling of neuronal activity within the brain and holds promise for a wide range of neuroprosthetic applications. One of the limitations of the current technology is inconsistent performance in long-term applications. Although the brain tissue response is believed to be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 2 4 شماره
صفحات -
تاریخ انتشار 2005